

Breaking barriers to access intracellular targets with T-cell engagers Discovery of diverse, developable, and ultra-specific antibodies against a MAGE-A4 pMHC

THE OPPORTUNITY

Unlock intracellular tumor targets

Immunotherapies are transforming cancer treatment by mobilizing the immune system to fight cancer. T-cell engagers — a type of immunotherapy — eliminate cancer cells by simultaneously binding tumor targets and the T-cell activating protein, CD3. Because T-cell engagers cannot access intracellular targets, their use is limited to targets expressed on the tumor cell surface.

T-cell engagers against peptides displayed on major histocompatibility complexes (pMHCs) are a promising approach for unlocking previously inaccessible, high-value, intracellular tumor targets¹.

One such target is melanoma-associated antigen 4 pMHC (MAGE-A4-pMHC), a tumor-specific antigen expressed by many solid tumors, but not by most healthy tissues².

THE CHALLENGE

Finding rare antibodies against pMHCs

MAGE-A4-pMHCs are challenging immunotherapy targets because (a) proteins within the MAGE-A family are highly homologous², (b) MAGE-A4 is often mutated in tumor cells³, and (c) there is very low expression of MAGE-A4-pMHCs on tumor cells⁴.

Antibodies that bind to MAGE-A4-pMHC with the specificity and affinity needed to minimize the risk of off-target binding are rare. Those that do bind and have favorable developability profiles are even more rare, making them difficult to identify using traditional approaches.

Furthermore, T-cell engager development requires tumor-binding antibodies that function as bispecifics, creating a need for diverse antibodies that can be paired with CD3-binders and tested for optimal function.

THE SOLUTION

Start with diverse panels of pMHC-binding antibodies

We used our antibody discovery and development engine to discover and characterize human MAGE-A4-pMHCbinding antibodies with favorable binding and developability profiles.

Lead MAGE-A4-pMHC antibodies will be selected and paired with our panel of previously described CD3-binding antibodies using our bispecific engineering platform, OrthoMab[™], to streamline the development of MAGE-A4-pMHC T-cell engagers.

THE OUTCOME

We identified a panel of antibodies against MAGE-A4-pMHC with:

- diverse sequence and binding profiles
- ultra-specific, high-affinity binding
- favorable developability profiles

45 diverse antibodies against a MAGE-A4 peptide-MHC target

Antibody discovery (A) Sequence analysis

Single-cell screening

Figure 1. Proprietary immunization technologies and high-throughput screening strategies were used to amplify and capture antibody diversity. (A) Humanized mice were immunized with human pMAGE-A4₂₃₀₋₂₃₉ presented on MHC-I (HLA:02*01). (B) Multiplexed bead-based single-cell screening assays were used to screen 1.5 million single B cells and identify antibodies that bind to MAGE-A4-, but not MAGE-B2- or SARS-pMHC (an unrelated peptide control). (C) 45 MAGE-A4-pMHC-binding antibodies from 23 clonal families with sequence diversity were selected for high-throughput expression and further characterization.

Ultra-specific, high-affinity MAGE-A4-pMHC binders

MAGE family	Amino acid sequence	Predicted peptide affinity to MHC-I ⁵	MHC-I relative gene expression0123
A4	GVYDG <u>REH</u> TV	SB	-
A10	GLYDGMEHLI	SB	
B3	RIYDGKKHFI	WB	- *
B5	QIYDGKKYYI	WB	*
B6	GIYDGILHSI	SB	-1
B10	GLYDGIEHFM	SB	-
C2	GVYAGREHFV	WB	*excluded due to weak
sCRAP pMHC			peptide-WHC-I binding
CELSR3	GLSDGQWHTV	SB	
LAMA1	LLSDGKWHTV	SB	
FLNC	GLSEGHTFQV	SB	
CYP4F3	FMFEGHDTTA	SB	•
VPS13B	GLMDGSPHFL	SB	
DYNC1H1	FLSDPQVHTV	SB	
FASN	ALLDGRLQVV	SB	
MMP9	FIFEG RSYSA	WB	
PIGR		SB	
TSPAN1		SB	-
TTN	FLHDGQEYTL	SB	
MALL		SB	
SARS	RLQSLQTYV -	SB	
non-pulsed			control

Figure 3. MAGE-A4-pMHC-binding antibodies are highly specific. (A) Antibody binding was further assessed using a high-throughput peptide-pulsed T2 assay with MAGE-A4-pMHC and 19 other related pMHCs, including seven pMHCs from the MAGE protein family and 13 pMHCs generated using the Selective Cross-Reactive Antigen Presentation (sCRAP) algorithm⁶. Predicted binding affinities of peptides to MHC-I were calculated using NetMHCpan⁵. Relative MHC-I expression levels in T2 cells pulsed with different peptides (as a measure of positive peptide binding to MHC-I) are shown. Peptides marked with (*) were excluded due to weak peptide-MHC-I binding.

Qualitative binding assessment

Figure 2. MAGE-A4-pMHC-binding antibodies were identified. (A) Antibody binding was assessed using a multiplexed bead-based binding validation assay with MAGE-A4-pMHC and closely related pMHC antigens. Binding (> 5 FOI) was compared to a MAGE-A4-pMHC-binding benchmark antibody and detected using flow cytometry. (B) Sensorgrams generated from Surface Plasmon Resonance (SPR) kinetic analysis of a selected target-binding antibody show relatively strong binding to MAGE-A4-pMHC compared to MAGE-A8-pMHC. No binding was observed to MAGE-B2- or SARS-pMHCs.

800

Cell-binding assessment

Pe	ptide specificity	Cont	
	pMAGE-A4 ₂₃₀₋₂₃₉	B	В
	Non-MAGE-A4 peptides	Μ	Ν
			lo

(B) Highlighted MAGE-A4-pMHC-binding antibodies show ultra-high specificity for MAGE-A4-pMHC with low to no binding to the other pMHCs tested.

(C) Antibody binding was further assessed in a cell-based peptide-pulsed T2 assay with MAGE-A4-pMHC and closely related pMHCs. Binding (> 5 FOI) was detected using flow cytometry. Over 70% of antibodies tested bound to both MAGE-A4-pMHC and MAGE-A8-pMHC (a closely related peptide also expressed on tumor cells) in both assays. (D) Relative MHC-I gene expression levels in T2 cells pulsed with different peptides (as a measure of positive peptide binding to MHC-I) are shown.

AbCellera antibodies

Expressed antibodies

Controls

- Benchmark antibody
- Isotype control antibody

10 -

SARS

1600

Time (s

Е-В2-рМНС	SARS-pMHC			
800 1600	0 800 1600			

- ntrol antibodies
- Benchmark antibody MHC-binding antibody
- Isotype control antibody

Binding affinity © SPR

Antibodies

- AbCellera antibodies
- Benchmark antibody

(C) SPR kinetic analysis of antibody binding to MAGE-A4-pMHC and MAGE-A8-pMHC. No binding was observed to MAGE-B2- or SARS-pMHCs (data not shown).

REFERENCES studies. Sci Rep-uk. 2016;6(1):25182.

- Response. Front Immunol. 2022;13:844866.
- 5. Technical University of Denmark. NetMHCpan 4.1. Pan-specific binding of peptides to MHC class I proteins of known sequence.
- https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/. Accessed March 22, 2023.

AUTHORS Davide Tortora, Peter Bergqvist, Tim Jacobs, Grace P. Leung, Elena Vigano, Antonios Samiotakis, Harveer Dhupar, Wei Wei, Shirley Zhi, Yukiko Sato, Allison Goodman, Cindy-Lee Crichlow, Melissa Cid, Jessica Fernandes Scortecci, Ping Xiang, Ahn Lee, Kush Dalal, Vivian Li, Stephanie K. Masterman, Sherie Duncan, Aaron Yamniuk, Raffi Tonikian*, Bryan C. Barnhart.*presenter

DOWNLOAD POSTER

AUTHOR AFFILIATION AbCellera, Vancouver, Canada

#1891

Figure 4. MAGE-A4-pMHC-binding antibodies have favorable developability profiles with high purity

measured by capillary gel electrophoresis using sodium dodecyl sulfate (CE-SDS), low aggregation measured by absolute size exclusion chromatography (aSEC), low relative surface hydrophobicity measured by analytical hydrophobic interaction chromatography (aHIC), high stability measured by nano differential scanning fluorimetry (nDSF), low polyspecificity assessed by baculovirus particle enzyme-linked immunosorbent assay (BVP-ELISA), and low self-association measured by affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) with scores normalized to high and low controls.

